28 due to the high chromium and it is austenitic due to the high nickel. A286 was developed as a high temperature alloy for use in pre-jet aircraft engines. The strength level was only 140,000 psi, but it had good high temperature strength and exceptional toughness, making it an excellent fastener alloy. Rocketdyne became interested in it for rocket engines being developed in the early 60’s. But they required higher strength. We were part of the team that developed a thermo-mechanical method to produce a strength level of 200,000 psi. This involved severe cold reduction after solution treatment and before aging. An aerospace material spec (AMS) was then written requiring this treatment for 200,000 psi strength level. There is no other steel alloy, at this level, which can match A286 for corrosion resistance, toughness or bolt fatigue strength. 17. Define “Power Dump.” This is a term used to define the heavy extrusion of the fastener body during forging. The part is forced into a die much smaller than the blank thereby causing a severe reduction in cross section area. This reduction of the cross sectional area is accompanied by an increase in length because metals can’t be compressed. However, power dumping or reduction, delivers a significant increase in strength properties and is part of the patented process we use to produce fasteners from 304 stainless steel with 170,000-190,000 psi UTS and AMS 5844 (ARP 3.5) with ultimate tensile strengths in the 260,000- 280,000 psi UTS range with outstanding fatigue. 18. What is the difference between 4130 and 8740 chrome moly? Both are alloy steels with similar chemistry. The 4130 has only .3% carbon and can’t be hardened as high as 8740, which has .4% carbon. Also, 8740 has about .45% nickel and 4130 has none. Both have moly (most alloy steels have moly). The chromium content of 4130 is slightly higher, .95% instead of .55%. However, 8740 is generally considered to have slightly better toughness due to the nickel. Metallurgy for the Non-Engineer FASTENER TECH
RkJQdWJsaXNoZXIy OTg4MDk=